Cluster Magnification

& Comparison to Shear Mass Measurements

Jes Ford, Moore/Sloan & WRF Data Science Postdoc, eScience Institute, University of Washington

with Ludovic Van Waerbeke, Hendrik Hildebrandt, Christopher Morrison, Clotilde Laigle, Martha Milkeraitis, Thomas Erben, Catherine Heymans, Henk Hoekstra, & the CFHTLenS collaboration

Summary: we measured stacked cluster masses using magnification, then shear, and compared the results. Masses are mostly within $1-2\sigma$, but trends suggest a *z*-dependant systematic bias.

Magnification Bias

Observed number densities of background sources are altered by the presence of a massive foreground lens.

Image: SDSS

- can use unresolved sources
- "easier" than measuring shapes
- higher-z than possible for shear
- different systematic biases than shear

Cluster Lenses

>18,000 cluster candidates over 154 deg² of CFHTLenS

- Redshifts up to $z \sim 1$
- Richness N_{200} mass proxy 3D-Matched-Filter cluster
- 3D-Matched-Filter cluster finder (Milkeraitis+ 2010)

Sources

Completely different sources for magnification than shear

- Magnification: ~120,000
 Lyman-break galaxies
 (u-dropouts) at z ~ 3
 (Ford+ 2014)
- Shear: ~10 million galaxies with shape measurements by CFHTLenS, z ≤ 1.2

(Ford+ 2015)

Magnification vs. Shear

Richness Trends

- slopes consistent
- normalization is off by $\sim 2\sigma$

Redshift Trends

- magnification masses fluctuate
- Explanation? contamination of LBGs with low-z galaxies could mimic magnification signal

Code & Data

cfhtlens.org cluster catalog & shear catalog are public

Contact

email: jesford@uw.edu

website:
jesford.github.io

find me, let's talk